污泥热解气是利用价值较高的生物质能源。以污泥微波热解气为燃料,建立固体氧化物燃料电池(solid oxide fuel cell)-微型燃气轮机(micro gas turbine,m GT)联合发电系统的模型,分析发电系统的性能,研究工作温度、电流密度、燃料利用率等运行参数对系统能效的影响。结果表明,设计工况下以污泥热解气为燃料的SOFC-MGT联合发电系统的发电效率达到55.9%,热电联产(CHP)效率高达74.8%,是高效的生物质能源利用方式。温度和电流密度对SOFC的性能具有较为明显的影响,合理提高工作温度和电流密度有利于提高SOFC的功率密度。研究还表明,燃料利用率增加时,SOFC的发电效率明显提升,整个系统的效率参数变化不明显,应从热解气组成和系统的安全性考虑,选择适当的燃料利用率。
Sludge pyrolysis gas is a form of biomass with high energy values. In this study,a detailed model was constructed of a SOFC-MGT combined power generation system fueled by sludge pyrolysis gas gasified gas.System operating performance was analyzed in addition to the influence of operation parameters such as temperature,current density,and the utilization factor. The results show electrical efficiency of up to 55. 9% and cogeneration efficiency of up to 74. 8% at design conditions,demonstrating that the system provides an efficient approach to utilizing biomass energy. Temperature and current density have significant influence on system performance. Appropriate increases in temperature and current density are beneficial for SOFC performance. Moreover,a higher utilization factor improves SOFC electrical efficiency,but system efficiency parameters change slightly with the change of utilization factor. The utilization factor should be chosen appropriately,in consideration of biogas composition and system security.