G是一个简单图, G的一个IE全染色 f是一个映射,该映射满足:对橙 u ,v∈V (G),u≠ v ,有C(u)≠ C(v)。图G的一个点可区别IE-全染色 f 是指一个从V (G)∪ E(G)到{1,2,…,k}的映射,且满足:对橙 uv∈ E(G),有 f (u)≠f (v);对橙 u ,v∈V (G),u≠v ,有C(u)≠C(v),其中C(u)={f (u)}∪{f (uv):uv∈ E(G)},简称k-VDIET 。数min{k:G有一个k-VDIET染色}称为图G的点可区别IE-全色数或简称VDIET色数,记为χievt (G)。本文讨论并给出了完全二部图K9,n的点可区别IE-全色数。
Let G be a simple graph . An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color . For each vertex x of G , let C(x) be the set of colors of vertex x and edges incident to x under f . A k-vertex-distinguishing IE-total-coloring of G is an IE-total coloring f of G(a k-VDIET coloring of G for short) using k colors ,if C(u)≠ C(v) for any two different vertices u and v of G .The minimum number of colors required for a VDIET coloring of G is denoted by χievt (G) , and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G briefly . VDIET colorings of complete bipartite graphs K9 ,n is discussed in this paper and the VDIET chromatic number of K9 ,n has been obtained .