针对制造企业产品销售时序具有多维、小样本、非线性和多峰等特征,将混沌理论与支持矢量机(Support vector machine.SVM)参数优选方法相结合,证明了结构风险最小化原则是在概率意义下近似正确的,由此得到支持矢量机的表现形式并不是唯一的,具有多样性的特征,在此基础上提出一种混沌v-支持矢量机(Chaotic-v SVM,Cv-SVM)模型,给出相应的产品销售预测方法。最后进行了汽车销售时序预测,结果表明基于Cv-SVM的产品预测方法是有效和可行的。
Aiming at the product sale time series of manufacturing enterprise with multi-dimension, small samples, nonlinearity, multi-peak, etc., chaotic mapping theory is combined with parameter optimization method of support vector machine, and a kind o f chaotic v-support vector machine (SVM) named Cv-SVM is proposed. And then, a product sale forecasting method is put forward. The results of application in car sale forecasting show that the forecasting method based on Cv-SVM is effective and feasible.