位置:成果数据库 > 期刊 > 期刊详情页
基于搜索空间划分和Sharing函数的粒子群优化算法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学计算机学院,成都610065
  • 相关基金:国家自然科学基金(60473071);高等学校博士学科点专项科研基金SRFDP(20020610007号)
中文摘要:

传统粒子群优化算法PSO(Particle Swarm Optimization)概念简单,适应性强,但存在早熟等问题.本文提出了新的基于搜索空间划分(Search Space Division)和Sharing函数的智能分布粒子群优化算法(SDSIR-PSO).创新点包括:(1)保优的重布粒子算法;(2)引入Sharing函数阻止重分布的粒子陷入同一局部最优;(3)划分搜索空间,子空间中寻优,再优中选优,作全局最优.通过对典型测试函数的详细测试验证了新算法的有效性,在相同条件下较传统算法的解精度提高了80%以上,并有效避免了早熟,提高了收敛速度.

英文摘要:

Traditional PSO algorithm may lead to prematurity by local optimum trap. This paper presents a novel, intelligent redistributed PSO based on search space partition and sharing function, named SDSIR-PSO. The main innovation of this paper include, (1) holding the best global solution while redistribute particles. (2) Introduces the Sharing function to avoid plunging same local trap. (3) Divides search space into sub-spaces and selects the best value as global optimum among optima selected from sub-spaces. The effectiveness of the new algorithm is proved by several well-known benchmark functions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542