Tin oxide(SnO2) is a promising wide bandgap semiconductor for next generation ultraviolet(UV) nonpolar optoelectronic devices applications.The development of SnO2-based optoelectronic devices is obsessed by its low exciton emission efficiency.In this study,quantum confined SnO2nanocrystals have been fabricated via pulsed laser ablation in water.The SnO2quantum dots(QDs) possess high performance exciton emission at 297-300 nm light in water.The exciton emission intensity and wavelength can be slightly tuned by laser pulse energy and irradiation time.Optical gain has been observed in SnO2QDs.Therefore,SnO2QDs can be a promising luminescence material for the realization of deep UV nanoemitter and lasing devices.
Tin oxide(SnO2) is a promising wide bandgap semiconductor for next generation ultraviolet(UV) nonpolar optoelectronic devices applications.The development of SnO2-based optoelectronic devices is obsessed by its low exciton emission efficiency.In this study,quantum confined SnO2nanocrystals have been fabricated via pulsed laser ablation in water.The SnO2quantum dots(QDs) possess high performance exciton emission at 297-300 nm light in water.The exciton emission intensity and wavelength can be slightly tuned by laser pulse energy and irradiation time.Optical gain has been observed in SnO2QDs.Therefore,SnO2QDs can be a promising luminescence material for the realization of deep UV nanoemitter and lasing devices.