位置:成果数据库 > 期刊 > 期刊详情页
基于特征融合与分类器在线学习的目标跟踪算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西北工业大学自动化学院,西安710129
  • 相关基金:国家自然科学基金项目(61273362);国家自然科学基金重点项目(61333017).
中文摘要:

为了解决目标在复杂环境下表观变化引起的跟踪漂移问题,提出一种基于多特征融合与分类器在线学习的目标跟踪算法.该算法利用不同表观特征训练子分类器,通过构建损失函数求得各子分类器可信度,进而加权融合子预测结果,得到当前帧最佳目标状态估计;同时,依据最近-最远边界原则和协同训练理论粗更新训练样本集,并通过精选择准则得到更具代表性的训练样本集,实现子分类器自适应更新.实验结果表明,所提出的算法在多种典型测试场景中都能取得较鲁棒的跟踪效果.

英文摘要:

To solve the tracking drift problem caused by object appearance change in complex environments, the paper proposes an object tracking algorithm on the basis of multi-feature fusion and classifier online learning. The algorithm trains the sub-classifier with different apparent features, and calculates the reliability of each classifier by building the loss function, and then the optimum target state estimation by means of the weighted fusion prediction results of each sub- classifier is obtained. Meanwhile, it updates the training sample set coarsely according to the nearest-farthest boundary principle as well as the co-training theory, and gets more representative ones with the refined selection criterion, which further updates the sub-classifier adaptively. Experimental evaluations demonstrate that the proposed algorithm achieves favorable tracking performance against state-of-the-art methods on various typical testing scenarios.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961