位置:成果数据库 > 期刊 > 期刊详情页
基于鲁棒主成分分析的人脸子空间重构方法
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学信息科学技术学院机器感知与智能教育部重点实验室,北京100871
  • 相关基金:国家"九七三"重点基础研究发展计划项目(2011CB302400).
中文摘要:

子空间方法是人脸识别中的经典方法,其基本假设是人脸图像处于高维图像空间的低维子空间中.但是,由于光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的影响,使得子空间假设难以满足.为此,提出一种基于鲁棒主成分分析的人脸子空间重构方法.该方法将人脸图像数据矩阵表示为满足子空间假设的低秩矩阵和表征光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的误差矩阵之和,利用鲁棒主成分分析法求解低秩矩阵和误差矩阵.实验结果表明,文中方法能够有效地重构人脸图像的低维子空间.

英文摘要:

Subspace method is one of the classical methods in face recognition, which assumes that face images lie in a low-rank subspace. However, due to illumination variation, shadows, occlusion, specularities and corruption, real face images seldom reveal such low-rank structure. We propose a face subspace recovery method based on the Robust Principal Component Analysis. The face image matrix is modeled as the sum of a low-rank matrix and a deviation matrix, in which the low-rank matrix reveals the ideal subspace structure and the deviation matrix accounts for the illumination variation, shadows, occlusion, specularities and corruption. By using the robust principal component analysis, the low-rank matrix and deviation matrix can be recovered efficiently. The experimental results show that this method is efficient in recovering the low-rank face suhspaces.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752