位置:成果数据库 > 期刊 > 期刊详情页
基于多源数据的中原黄泛区土壤盐分空间变异分析
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2015.3.1
  • 页码:115-120
  • 分类:S127[农业科学—农业基础科学] S156.4[农业科学—土壤学;农业科学—农业基础科学]
  • 作者机构:[1]安徽工业大学能源与环境学院,马鞍山243002, [2]土壤与农业可持续发展国家重点实验室中国科学院南京土壤研究所,南京210008
  • 相关基金:国家自然科学基金项目(41171178,51109204);江苏省科技支撑项目(2013357)
  • 相关项目:黄淮海平原典型区域土壤盐渍化演变机制与发生风险防控对策研究
中文摘要:

为研究中原黄泛区土壤盐分空间变异,以河南省封丘县为研究区,综合考虑引起土壤盐渍化的土壤盐分、地形、地下水位及矿化度、植被情况及其他影响因素,基于遥感影像和磁感式探测获得的土壤表观电导率等多源数据建立了区域土壤盐分综合评估模型,并对研究区分层土壤盐分空间变异进行评估。结果表明:对于0~60 cm土层利用多源数据进行模型构建中土壤表观电导率与光谱指数占主要比例,模型对于各层土壤盐分的评价精度0~60 cm土层优于≥60~120 cm土层。土壤盐分含量随着深度的增加而增大,变异系数在0.22~0.28之间,属中等变异强度。土壤盐分主要集中分布在研究区北部与东南部,尤其是东南角黄河沿线区域,且随着土壤剖面显示出从表现到深层逐渐增加的趋势。利用多源数据建立的分层土壤盐分综合评估模型对于区域土壤盐分解析具有较高精度。该研究为中原黄泛区土壤盐化消减与土壤质量提升提供了可靠新方法。

英文摘要:

Salinization and alkalinization are two of important land degradation processes in flood area of the Yellow River in central China. A synthesized model for assessment of regional soil salinity was established based on multi-source data including soil salinity, topographical variable, the groundwater level and mineralization degree, vegetation and other factors to the soil salinization. A total of 101 soil columns were sampled from the study area using grid sampling method, and then analyzed for soil electrical conductivity (ECe) and other soil properties. Auxiliary data used in this study to interpret variability of soil salinization were Landsat 5 TM data, apparent electrical conconductivity (ECa) measured using an electromagnetic induction instrument (EM38), altitude derived from topographic map, the groundwater table and mineralization degree and soil pH. The spatial variability of soil salinity was assessed in Fengqiu County, Henan Province, China. Classification and regression tree was applied to obtain the relationships between ECe (0-120 cm) and the auxiliary data. The results showed that ECa accounted for the major proportion of model prediction from multi-source data in classification and regression tree model of total soil layer. Generally, ECaH (apparent soil electrical conductivity from EM38 horizontal mode) and spectral index (dvi: difference vegetation index, bi:soil index, int2: intentity, int1: intentity, ndvi: normalized difference vegetation index, si2: soil index and si1: soil index) were common variable for 0-60cm soil layer. For the 0-30 cm depth, plant index (ndvi and dvi), soil index (si1, si2 and bi) and intentity (int1 and int2) had the highest influence on the model prediction followed by ECa. Plant index (dvi) accounted of more than 50% for 0-60 cm soil layer used in the model. Meanwhile, for≥60-120 cm, ECaV (apparent soil electrical conductivity from EM38 vertical mode) was the most important variable used in regression tree m

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231