位置:成果数据库 > 期刊 > 期刊详情页
面向脑皮层厚度的特征选择方法研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,济南250014, [2]兰州大学信息科学与工程学院,兰州730000
  • 相关基金:国家自然科学基金资助项目(61210010)
中文摘要:

针对当前阿尔茨海默症脑皮层厚度数据的特征选择算法分类精度问题,提出一种融合的特征选择算法。分析处理轻度认知障碍人群和正常老年人的脑皮层厚度的核磁共振图像数据,基于此数据融合最小冗余和最大相关方法与Relief方法,并使用粒子群优化算法求得最优权重;使用此权重融合两种方法对脑皮层厚度的脑区特征进行特征选择,选出使分类准确率较高的特征。实验使用留一验证对实验结果进行评估,选出的特征对轻度认知障碍人群与正常老年人的分类效果好于当前流行的特征选择方法。

英文摘要:

This paper proposed a hybrid feature selection algorithm,in view of the current problems of the classification accuracy of feature selection algorithm for cortical thickness data of Blzheimer's disease. Firstly,this paper analyzed and processed magnetic resonance image cortical thickness' data of mild cognitive impairment and normal elderly population. Based on this data it fused minimum redundancy and maximum correlation method and Relief method,and used particle swarm optimization algorithm to obtain the optimal weights. Then,it did feature selection using this weight fusion of two kinds of methods of cortical thickness for features of brain regions,selected characteristics that made the higher classification accuracy. The experiment uses leave-one-out cross validation to evaluat the result. The classification results of people with mild cognitive impairment and normal elderly people based on the selected features is better than the current popular feature selection method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049