位置:成果数据库 > 期刊 > 期刊详情页
基于SAM与SVM的高光谱遥感蚀变信息提取
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2013.5
  • 页码:141-146
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院新疆生态与地理研究所新疆矿产资源研究中心,乌鲁木齐830011, [2]中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,乌鲁木齐830011, [3]中国科学院大学,北京100049
  • 相关基金:新疆科技厅科技基础条件平台建设项目(No.PT1217);国家自然科学基金(No.U1129302);国家科技支撑计划(No.2011BAB06B08-01);“西部之光”人才培养计划(No.XBBS201107,No.XBBS201203);新疆科技厅青年基金(No.2011211B48)。
  • 相关项目:新疆典型矿床的特征提取技术及预测方法研究
中文摘要:

高光谱遥感技术的发展,提高了遥感技术的定量化水平,要求人们从光谱维去理解地物在空间维的变换。提出了一种光谱角匹配技术(Spectral Angle Mapper,SAM)与支持向量机(Support Vector Machine,SVM)相结合的高光谱遥感蚀变信息提取模型,在光谱维提取地表的蚀变信息。鉴于SAM算法仅考虑波谱矢量方向,忽略辐射亮度大小的缺点,利用SVM算法对SAM的提取结果进行二次分类,利用网格搜索法并结合分类精度评估进行参数寻优。通过AVIRIS高光谱数据实验证明,提取的蚀变信息分类精度为78.1726%,Kappa系数为0.7125。该模型计算方便,对于解决光谱维的地物分类及相似矿物的蚀变信息提取具有一定的实际意义。

英文摘要:

With the development of hyper-spectral remote sensing technology, the level of quantitative remote sensing technology has improved. Aiming at the hyper-spectral image cube, the understanding and data processing in image spatial dimension must be changed to that completed in the spectral dimension. Therefore, an image classification model combined with SAM(Spectral Angle Mapper)and SVM(Support Vector Machine)is introduced, and extracts alteration information in the spectral dimension. In view of the SAM algorithm considering only the spectrum direction, ignoring radiance size, the second classification is made for the SAM results using SVM algorithm and the best parameter is sought using grid search method combined with the classification accuracy assessment. The results of AVIRIS hyper-spectral data show that the classification precision of alteration information reaches 78.172 6%, and a Kappa coefficient of 0.712 5. This model is convenient calculation, and has some practical meaning in solving spectral dimension terrain classification and similar mineral alteration information extraction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887