采用5种复合调理剂改善污泥脱水性能,制得深度脱水泥饼。通过检测N2气氛下,不同干化温度(100℃、200℃),停留时间(30 min、60 min)时,不同调理脱水污泥含水率的变化情况,以及含硫气体的种类和释放量,探讨不同调理剂对干化过程中含硫气体释放特性的影响。结果表明,提高温度、延长时间都可以有效降低污泥的含水率;原污泥干化过程释放的主要含硫气体为H2S和SO2,其总量占含硫气体的82.4%;FeCl3+CaO和H2SO4+FeSO4+H2O2+CaO复合调理剂调理脱水泥饼在干化过程中SO2释放量占原污泥释放量的40.3%和40.6%,H2S则基本没有释放;H2SO4+FeSO4+H2O2+CaO调理脱水污泥在100℃和200℃干化过程中的总硫释放量分别占原污泥总释放量的75.0%和45.6%,该复合调理剂在有效提高污泥脱水性能的基础上,能最大限度地抑制含硫气体的释放。
To improve sludge dewaterability the different kinds of deep dewatered sludge were prepared by using five kinds of composite conditioners. The influence of the conditioners on the emission characteristics of sulfur-containing gases during the sludge drying process was investigated via detection of water content in dewatered sludge, and of types and amount of sulfur-containing gases released at various drying temperatures (100 ℃, 200℃) and various residence time (30 min, 60 min). The results showed that the water content in sludge can be effectively reduced with increase of temperature and prolong of time. The major sulfur-containing gases released during raw sludge drying process were H2S and SO2, accounted for 82.4% of the total emission gas. The amount of SO2 released using conditioner FeC13+CaO and H2SO4+FeSO4+H202+CaO were only 40.3% and 40.6% of the raw sludge, respectively, and no HzS was detected. While for conditioner H2SO4+FeSO4+H202+CaO the total amount of sulfur-containing gases released were 75.0% and 45.6% of the raw sludge at 100℃ and 200℃, respectively. So, these composite conditioners could efficiently enhance sludge dewaterability while maximally inhibit the emission of sulfur-containing gases.