位置:成果数据库 > 期刊 > 期刊详情页
基于个体优势遗传算法的水稻生育期模型参数优化
  • ISSN号:0578-1752
  • 期刊名称:《中国农业科学》
  • 时间:0
  • 分类:S512.101[农业科学—作物学]
  • 作者机构:[1]南京农业大学信息科技学院,南京210095, [2]南京农业大学国家信息农业工程技术中心,南京210095
  • 相关基金:国家自然科学基金(30971697)、江苏高校优势学科建设工程资助项目(PAPD)
中文摘要:

【目的】快速并准确估算作物生育期模型参数。【方法】本文提出了一种新的改进型遗传算法——个体优势遗传算法(individual advantages genetic algorithm,IAGA),并应用于水稻生育期模型参数估算。在遗传算法的基础上引入个体优势算子,并改进了变异算子及种群更新策略。以完全嵌入方式耦合RiceGrow和ORYZA2000水稻生育期模型,实现了模型参数的自动率定。利用汕优63等5个水稻品种在徐州、高要等地的多年田间试验资料,对IAGA算法的有效性进行对比试验。【结果】(1)试验验证结果的RMSE〈3.05 d,NRMSE〈3.19%,MDA〈2.41 d,R2〉0.9885,表明利用IAGA获得的模型参数准确性较高。(2)调参的实测数据量大小对调参结果影响不大。由3年数据增加到6年数据,试验拟合结果最大NRMSE值由2.58%增大到3.08%,增加了0.5%。选择隔年并包含全生育期天数最大值与最小值的调参数据,可以获得较准确的模型参数值。(3)IAGA与复合形混合演化算法、遗传模拟退火算法以及标准粒子群算法相比,可获得更准确的模型参数值。【结论】IAGA算法可以实现水稻生育期模型参数的自动率定,为作物生长模型参数的快速准确估算提供了一种有效新方法。

英文摘要:

[Objective] Fast and accurate estimation of crop growth model parameters is the basis of the crop system simulation. [ Method] In this paper, a newly improved genetic algorithm, named individual advantage genetic algorithm (IAGA), is proposed and applied to the field of the parameters evaluation of the rice development stages model. Firstly, the individual advantage operator was introduced into the genetic algorithm, thus improved the mutation operator and the update strategy of population. Secondly, two rice development stages models, RiceGrow and ORYZA2000, were coupled with IAGA in a way of total embedment, and realized automatic estimation of the parameters in the models. At last, a series of comparative experiments were carried out to verify the effectiveness of IAGA with multi-year field trial data of Shanyou63, and other four rice varieties in Xuzhou, Gaoyao, etc. [Result] The experimental verification results which cover RMSE〈3.05 d, NRMSE〈3.19%, MDA〈2.41 d, R2〉0.9877, indicated that the accuracy of the model parameters obtained by IAGA was pretty high. The amount of data used for the parameters estimation had little effect on the results. The maximum NRMSE of the fitting results increased from 2.58% to 3.08% when the amount of data used for the parameters estimation from three years to six years was changed. More accurate model parameters were obtained when we select the data of every other year, including the maximum and minimum value of the whole growth period. Compared with the shuffled complex evolution algorithm, genetic simulated annealing algorithm and standard particle swarm algorithm, IAGA could obtain more accurate model parameters. [ Conclusion ] The IAGA can achieve automatic determination of ricedevelopment stages model parameters, therefore it provides an effective and new method for estimating parameters for crop growth model quickly and accurately.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国农业科学》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国农业部
  • 主办单位:中国农业科学院 中国农学会
  • 主编:万建民
  • 地址:北京中关村南大街12号中国农业科学院图书馆楼4101-4103室
  • 邮编:100081
  • 邮箱:zgnykx@caas.cn
  • 电话:010-82109808 82106279
  • 国际标准刊号:ISSN:0578-1752
  • 国内统一刊号:ISSN:11-1328/S
  • 邮发代号:2-138
  • 获奖情况:
  • 中国期刊方阵“双高”期刊,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:85620