位置:成果数据库 > 期刊 > 期刊详情页
基于LBPV的浮选泡沫图像纹理特征提取
  • ISSN号:1001-3695
  • 期刊名称:计算机应用研究
  • 时间:2011
  • 页码:3934-3936
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083
  • 相关基金:国家自然科学基金资助项目(61071176)
  • 相关项目:矿物浮选泡沫视觉图像处理方法研究
中文摘要:

在浮选生产中,浮选泡沫表面纹理与浮选工况密切相关,直接反映泡沫层的矿化程度(品位高低)。为了给浮选操作提供指导,提出了一种基于LBPV(local binary pattern variance)的泡沫图像纹理特征提取方法。该方法通过融合泡沫图像局部空间结构和对比度来提取泡沫图像纹理特征,然后将LBPV纹理特征应用于浮选工况状态的聚类分析。结果表明,该方法提取的纹理特征能有效反映浮选工况,且能获得更优的浮选泡沫聚类质量。

英文摘要:

In the flotation process,the surface features of the cleaner froth had close connection with the flotation production condition and reflected the mineralization of foam layer(concentrate grade).In order to optimize the flotation operation,this paper proposed a method of LBPV to extract the bubble texture features.The features of bubble image were extracted on the combination of local texture spatial structures and contrast features.LBPV texture features used in the cluster analysis of the flotation operation condition state.Clustering results show that the texture feature are efficient in reflecting the bubble states and can obtain better clustering quality of flotation foam.

同期刊论文项目
期刊论文 25 会议论文 5 专利 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049