位置:成果数据库 > 期刊 > 期刊详情页
基于深度信念网络的民航发动机状态监测
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:V267[航空宇航科学与技术—航空宇航制造工程;航空宇航科学技术]
  • 作者机构:南京航空航天大学民航学院,南京2111OO
  • 相关基金:国家自然科学基金青年基金(71401073).
中文摘要:

民航飞机发动机设备构造精密、复杂,其监测系统收集的数据中蕴含了丰富的故障信息;传统发动机状态诊断依靠数据统计分析和机器学习模型,但其在深入理解与归类信号特性方面的表现难以尽如人意;此外近年兴起了多层神经网络降维算法——深度学习理论,其通过模拟人脑分析过程建立由浅人深的算法模型,数据处理效果较好;将民航发动机自身特点与深度学习理论有机结合提出了基于深度信念网络发动机状态监测方法;其优势在于克服了传统方法人工提取数据特征的不确定性与状态分类陷入局部最优的缺陷,可对发动机参数进行自主学习与特征提取;实验结果表明该算法具有出色的特征提取能力与分类准确率,能够准确识别发动机的不同状态。

英文摘要:

Civil aircraft engine has precise and complicated structure. The data collected by monitoring systems contain abundant fault message. Traditional methods of monitoring engine's health condition are based on data statistics and machine learning model. However, its performance on deep-understanding and classifying characteristics of massive data didn' t meet the requirement as we had expected. In addition, as the dimension reduction method of Neural Networks, deep learning, flourishing in recent years, builds up algorithm model which is able to process data effectively by simulating the structure of human brain. Combining the characteristics of engine with deep learning theory, the paper put forward a new method of monitoring engine~ s health condition. The advantageous conditions of the method include overcoming the uncertainty of characteristic extraction and deficiency of partial response. It's able to learn and classify the characteristics automatically. Result of the test shows that the method can not only extract characteristics from massive data, but also obtain high identification accuracy of different health conditions of engine.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924