This paper investigates L2-gain analysis and anti-windup compensation gains design for a class of discrete-time switched systems with saturating actuators and L2 bounded disturbances by using the switched Lyapunov function approach.For a given set of anti-windup compensation gains,we firstly give a sufficient condition on tolerable disturbances under which the state trajectory starting from the origin will remain inside a bounded set for the corresponding closed-loop switched system subject to L2 bounded disturbances.Then,the upper bound on the restricted L2-gain is obtained over the set of tolerable disturbances.Furthermore,the antiwindup compensation gains aiming to determine the largest disturbance tolerance level and the smallest upper bound of the restricted L2-gain are presented by solving a convex optimization problem with linear matrix inequality(LMI) constraints.A numerical example is given to illustrate the effectiveness of the proposed design method.