主要研究定义在Lp[0,1](1≤p〈+∞)上的一类推广的Bernstein-Kantorovich算子Ln(f,sn,x)的逼近性质.利用Ditzian-Totik光滑模ωφ^2(f,t)给出了算子Ln(f,sn,x)的逼近正定理及Steckin-Marchaud不等式。
The aim is to study some approximate properties by a kind of generalized Bern stein-Kantorovich operators Ln(f,sn,x) defined in Lp[0,1](1≤p〈+∞) . By the help of Ditzian-Totik moduli of smoothness ωφ^2(f,t), obtain direct theorems and Steckin-Marchaud inequalities on operators Ln(f,sn,x).