位置:成果数据库 > 期刊 > 期刊详情页
基于可见/近红外光谱技术的番茄叶片灰霉病检测研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] S436.4[农业科学—农业昆虫与害虫防治;农业科学—植物保护]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029, [2]浙江大学农业与生物技术学院,浙江杭州310029
  • 相关基金:国家自然科学基金项目(60605011),浙江省重大科技攻关项目(2005C12029)和宁波市自然科学基金项目(2007A10080)资助
中文摘要:

利用可见/近红外光谱技术对感染灰霉病的番茄叶片感染程度进行了检测。提出了主成分分析结合BP神经网络的数据处理方法。采用主成分分析进行数据的降维,减少了计算量,提高了建模精度。通过主成分分析中的载荷值,定性地分析了不同波段对病害程度检测的重要性。将得到的最主要的几个主成分输人BP神经网络进行建模,预测结果显示,当主成分数为8,隐含层结点数为11的时候,病害程度的检测模型对未知样本预测的相关系数达到0.930,SEP为0.0687,模型具有良好的检测效果。说明基于光谱技术和化学计量学方法的灰霉病检测模型具有很好的检测能力,为光谱技术应用于病害检测提供了新的方法。

英文摘要:

Visible and near-infrared reflectance spectroscopy (Vis/NIRS) technique was applied to the detection of disease level of grey mold on tomato leave. Chemometrics was used to build the relationship between the reflectance spectra and disease level. In order to decrease the amount of calculation and improve the accuracy of the model, principal component analysis (PCA) was executed to reduce numerous wavebands into several principal components (PCs) as input variables of BP neural network. The loading value of PC1 was applied to qualitatively analyze which wavebands were more important for disease detection. Prediction results showed that when the number of primary PCs was 8 and the hidden nodes of BP neural network were 11, the detection performance of the model was good as correlation coefficient (r) was 0. 930 while standard error of prediction (SEP) was 0. 068 7. Thus, it is concluded that spectroscopy technology is an available technique for the detection of disease level of grey mold on tomato leave based on chemometrics used for data analysis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642