文章对6例直肠癌变及正常组织进行高分辨魔角旋转核磁共振波谱研究,结果显示直肠癌变和正常组织的核磁共振氢谱存在明显差异。这可以通过特征峰面积与0.88处峰积分面积的比值上的差异看出:(1)在化学位移0.75~1.55之间,癌组织各种氨基酸[缬氨酸,异亮氨酸,亮氨酸]与脂肪酸甲基的比值(I2/I1),癌组织乳酸盐与脂肪酸甲基的比值(I4/I1)都明显增大。(2)在化学位移1.55~2.90之间,癌变组织中亮氨酸、赖氨酸、异亮氨酸与脂肪酸甲基的比值(I7/I1),谷氨酸、谷氨酰胺、缬氨酸、琥珀酸与脂肪酸甲基的比值((I9+I11)/I1)、天冬氨酸与脂肪酸甲基的比值((I12+I14)/I1)都较正常组织明显增大。(3)在化学位移2.90~3.49之间,癌变组织氨基酸与脂肪酸甲基的比值(I15/I1)、胆碱类与脂肪酸甲基的比值((I16+I17)/I1)、牛磺酸与脂肪酸甲基的比值((I18+I19)/I1)都较正常组织明显增大。(4)在化学位移3.49~4.50之间,其他代谢物与脂肪酸甲基的比值(I20/I1),以及甘油基与脂肪酸甲基的比值(I22/I1)在癌变组织中都有增大的趋势。(5)化学位移4.5~10之间,癌变组织的核苷酸发生了变化,癌变组织的不饱和脂肪酸与脂肪酸甲基的比值(I24/I1)明显减小。(6)在化学位移-8~0.75之间,癌变组织的谱峰有减少的趋势。通过上述分析可知,通过癌变与正常组织代谢物NMR谱峰的差异,可以区分癌变和正常组织。说明核磁共振波谱技术可能发展成为一种诊断直肠癌的新方法。
In the present paper, NMR spectroscopy, an effective tool to detect the variation in molecular structure and changes in chemical composition of metabolites in tissues, was used to study the differences between malignant and normal tissues from rectum. 1H spectra of four malignant rectum tissue samples and two normal control tissues were investigated by using a 500M NMR high-resolution magic angle spinning magnetic resonance spectrometers (HR-MAS NMR). The results indicate that the ^1H HR-MAS spectra of rectum cancer tissues are significantly different from those of the normal controls and most differences are presents in the form of variation in the relative intensities of the characteristic peak of various metabolites. In order to characterize the variation in the relative intensities in a quantitative manner, the intensity of the methyl peak of fatty acid at 0.88 was utilized as inner standard. Systematic differences between NMR spectra of malignant tissue and normal controls are as follows: (1) The concentration of amino acid increases significantly in malignant tissues, since the relative intensities of characteristic peaks of amino acid including valine, isoleucine, leucine, lysine, glutamate, glutamine, and aspartate are stronger in the NMR spectra of the malignant tissues. This phenomenon may reflect the fact that the activity of protein synthesis is enhanced in cancerous tissues. (2) The intensities of the characteristic peaks of lactic acid in malignant tissues are higher than those from normal controls. This may be related to the nature of anaerobic metabolism activity in malignant tissues. (3) The level of choline and its derivatives, taurine and creatine, increases significantly in malignant tissues, suggesting that the metabolic activity of malignant tissues changes. (4) In the spectral region between 4.5 and 10, observable changes occur on the peaks for unsaturated fatty acid and nuclear acids. Therefore, the above spectral variations in high resolution magic angle spinning NMR