一个水文学模型的参数优化是在模型开发和申请以内的不可缺少的进程。关于模型参数的有效优化的知识的缺乏经常在当模特儿的过程以内导致一个瓶颈,导致是更困难的完成的分布式的水文学模型的有效刻度和确认。全球参数优化的古典途径被是耗时的通常描绘,并且让高计算花费。为这个原因,与 SCE-UA 方法联合一条建模元的途径的一条综合途径被建议,并且在这研究以内适用优化水文学模型参数评价。建模元被用来为所有参数决定优化范围,跟随 SCE-UA 方法哪个被使用完成全球参数优化。multivariate 回归适应花键方法被用来作为一个代理人模型构造反应表面到一个复杂水文学模型。在这研究,每天分布式的时间变体获得模型(DTVGM ) 适用于 Huaihe 河盆,中国,被选择为案例研究。综合客观功能基于水平衡系数和 Nash-Sutcliffe 系数被用来评估模型表演。案例研究证明综合方法罐头高效地完成多参数优化进程,并且也证明方法是为有效参数优化的一个强大的工具。
Parameter optimization of a hydrological model is an indispensable process within model development and application. The lack of knowledge regarding the efficient optimization of model parameters often results in a bottle-neck within the modeling process, resulting in the effective calibration and validation of distributed hydrological models being more difficult to achieve. The classi- cal approaches to global parameter optimization are usually characterized by being time consuming, and having a high computa- tion cost. For this reason, an integrated approach coupling a meta-modeling approach with the SCE-UA method was proposed, and applied within this study to optimize hydrological model parameter estimation. Meta-modeling was used to determine the optimization range for all parameters, following which the SCE-UA method was applied to achieve global parameter optimization The multivariate regression adaptive splines method was used to construct the response surface as a surrogate model to a complex hydrological model. In this study, the daily distributed time-variant gain model (DTVGM) applied to the Huaihe River Basin, China, was chosen as a case study. The integrated objective function based on the water balance coefficient and the Nash-Sutcliffe coefficient was used to evaluate the model performance. The case the multi-parameter optimization process, and also demonstrates mization. study shows that the integrated method can efficiently complete that the method is a powerful tool for efficient parameter opti-