位置:成果数据库 > 期刊 > 期刊详情页
基于确定学习的机器人任务空间自适应神经网络控制
  • ISSN号:0254-4156
  • 期刊名称:自动化学报
  • 时间:2013
  • 页码:806-815
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华南理工大学自动化科学与工程学院,广州510640
  • 相关基金:国家自然科学基金(60934001,61225014,61075082)资助
  • 相关项目:涡扇发动机压缩系统不稳定流动的建模、预测和控制
作者: 吴玉香|王聪|
中文摘要:

针对产生回归轨迹的连续非线性动态系统,确定学习可实现未知闭环系统动态的局部准确逼近.基于确定学习理论,本文使用径向基函数(Radial basis function,RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法,不仅实现了闭环系统所有信号的最终一致有界,而且在稳定的控制过程中,沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近.学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储,可以用来改进系统的控制性能,也可以应用到后续相同或相似的控制任务中,节约时间和能量.最后,用仿真说明了所设计控制算法的正确性和有效性.

英文摘要:

Deterministic learning can achieve locally-accurate approximation of the unknown closed-loop system dynamics while attempting to control a class of nonlinear systems producing recurrent trajectories. Based on deterministic learning, an adaptive neural control algorithm is proposed for unknown robots in task space using radial basis function (RBF) networks. The designed adaptive neural controller can not only guarantee all signals in the closed-loop system uniformly ultimately bounded, but also achieve convergence of partial network weights to their optimal values. It can also learn the unknown closed-loop system dynamics in a stable control process along recurrent tracking orbits. The learned knowledge stored as constant network weights can be reused in a same or similar control task to improve the control performance and to save time and energy. Simulation results demonstrate the effectiveness of the proposed approach.

同期刊论文项目
期刊论文 14 会议论文 4 专利 3
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550