位置:成果数据库 > 期刊 > 期刊详情页
支持向量机在高考成绩预测分析中的应用
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:苏州大学计算机科学与技术学院,江苏苏州215006
  • 相关基金:国家自然科学基金(61373093,61672364),江苏省自然科学基金(BK20140008),江苏省高校自然科学研究项目(13KJA520001),江苏省青蓝工程资助.
中文摘要:

支持向量机作为一种机器学习算法因其良好的推广性和强大的非线性处理能力而令人瞩目.为此将支持向量机与国家高考的实际数据相结合,以具体高校的高考模拟考试成绩为主要训练数据,进行学生的高考成绩预测.实验考虑了三种情形.一是通过六次模拟考试的特征分来预测高考的特征分;二是通过六次模拟考试和高考的特征分来预测高考的录取批次;三是通过六次模拟考试的特征分和高考的预测特征分来预测高考的录取批次.通过与神经网络算法的比较,实验结果均表明了支持向量机方法的稳定性和良好的预测性.

英文摘要:

Support vector machine(SVM), one of machine learning methods, is very impressive for its good generalization and powerful nonlinearly processing ability. SVM was combined with national matriculation, where scores of six mock exams are taken as training data to predict the final admission scores. Three situations were considered. First, the scores of NMT were predicted using scores in six simulation tests. Second, the admission batch was predicted by using scores in six simulation tests and NMT. Third, the admission batch was predicted by using scores in six simulation tests and the estimated scores in NMT. In all experiments, SVMs were compared with neural networks (NNs). Experimental results show that SVMs are much more stable and have better prediction ability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237