位置:成果数据库 > 期刊 > 期刊详情页
基于特征融合的ARMA短时睡眠状态分析
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] R318.04[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:华东理工大学信息科学与工程学院,上海200237
  • 相关基金:国家自然科学基金(61074113,91420302);上海市自然科学基金(16ZR1407500)
中文摘要:

针对短时睡眠的特点,结合自回归-移动平均模型(Auto-Regressive and Moving Average Model,ARMA)对短时睡眠过程中的睡眠状态变化进行分析研究。以白天短时睡眠中记录的脑电信号为研究对象,首先,从脑电信号中提取了3个与短时睡眠过程相关的特征参数,采用条件概率方法对特征参数进行融合处理,计算得到一个表征睡眠状态的参数;然后,通过ARMA模型分析睡眠状态的变化趋势;最后,采用支持向量机(Support Vector Machine,SVM)方法将整个短时睡眠过程进行了睡眠状态的自动判别,并与人工判别进行比较。结果表明,基于特征融合的ARMA模型显著提高了睡眠状态分析的准确率,7组测试数据得到的平均准确率为88.7%。一方面,特征融合能够有效地提高数据处理速度,为睡眠状态实时检测提供有利的数据处理方式;另一方面,ARMA模型的预测作用,能够分析受试者的睡眠状态变化趋势,为进一步调整和控制睡眠时长提供客观评价依据。

英文摘要:

According to the characteristic of nap, this work proposes a sleep level estimation method based on ARMA model for analyzing the sleep status varying in nap. By using the sleep data during day nap,3 relevant parameters are calculated from Electroencephalogram(EEG),which are further fused into one parameter via the conditional probability for describing different sleep levels. And then, Auto Regressive and Moving Average (ARMA) model is adopted to analyze the sleep tendency. Finally,Support Vector Machine(SVM) is utilized to classify the sleep progress automatically. Compared with the visual inspection,the proposed estimation method can raise the sleep level recognition up to the average 88.7 % of all 7 subjects. On one hand, feature fusion can improve the calculation speed significantly and provide an effective method for real-time sleep level detection. On the other hand, the prediction feature of ARMA model can be utilized to analyze the sleep tendency and provide an objective evaluation for further adjusting and controlling the sleep duration.

同期刊论文项目
期刊论文 26 会议论文 17
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083