位置:成果数据库 > 期刊 > 期刊详情页
基于联合矩阵分解的动态异质网络社区发现方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:国家数字交换系统工程技术研究中心,郑州450002
  • 相关基金:国家科技支撑计划资助项目(2014BAH30B01);国家自然科学基金创新群体资助项目(61521003);国家自然科学基金资助项目(61379151)
中文摘要:

动态网络的社区发现是目前复杂网络分析领域的重要研究内容,然而现有动态网络社区发现方法主要针对同质网络,当网络包含多种异质信息时,现有方法不再适用。针对这个问题,提出了一种基于联合矩阵分解的动态异质网络社区发现方法。首先计算动态异质网络中各个快照图的拓扑相似度矩阵和多关系相似度矩阵;其次利用时序联合非负矩阵分解方法,约束各个时刻快照图的社区划分;最后在真实网络数据集上与K-means、MetaFac算法进行比较实验,提出算法能够充分利用网络的异质信息与拓扑信息,异质网络社区划分精度优于MetaFac算法,且划分效果更稳定。结果表明,基于联合矩阵分解的动态异质网络社区发现算法可以有效检测出动态异质网络中潜在的社区结构。

英文摘要:

Dynamic community detection is an important research field of complex network analysis. However, with the rapid development of social networks, the structure of networks becomes more and more complex. Traditional community detection methods in homogeneous networks can hardly adapt with the demand of heterogeneous networks. In order to deal with this problem, this paper proposed a joint non-negative matrix factorization algorithm for dynamic heterogeneous networks. Firstly, the algorithm calculated the topology similarity and multi-relational similarity in each snapshot. Then it combined the historical information and current information with joint non-negative matrix factorization algorithm to detect communities from dynamic heterogeneous networks. Finally it took comparative experiment on real Web datasets with K-means and MetaFac algorithms. The proposed algorithm took full advantage of heterogeneous information and network topology information, and could get more accuracy and robust than MetaFac algorithm in heterogeneous network community division. The result of experiments demonstrates that the proposed algorithm can detect community in dynamic heterogeneous network effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049