位置:成果数据库 > 期刊 > 期刊详情页
基于制动意图识别的增程式重型商用车复合制动控制策略
  • ISSN号:1001-7372
  • 期刊名称:《中国公路学报》
  • 时间:0
  • 分类:U463.5[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程]
  • 作者机构:[1]长安大学汽车学院,陕西西安710064, [2]长安大学电子与控制工程学院,陕西西安710064
  • 相关基金:国家高技术研究发展计划(“八六三”计划)项目(2012AA111106);国家自然科学基金项目(51507013);陕西省工业科技攻关项目(2016GY-043);陕西省自然科学基础研究计划青年人才项目(2016JQ5012);中央高校基本科研业务费专项资金项目(310824163202,310822151025,310822173201)
中文摘要:

为了提高增程式重型商用车制动能量回收率和制动性能,通过分析大量实车制动数据,以制动踏板位移和制动踏板位移变化率为输入设计制动意图的模糊推理规则,采用LQV神经模糊系统建立制动意图识别模型;在制动力分配要求、电机再生制动约束、蓄电池约束等约束条件下,基于制动意图识别建立机-电复合制动控制策略,并通过60km·h~(-1)初速单次制动工况仿真、中国典型城市公交工况(CCBC工况)仿真和实车试验验证复合制动控制策略的性能。研究结果表明:提出的复合制动控制策略能够准确识别驾驶人的制动意图,优化制动力分配,提高制动能量回收率;其中60km·h~(-1)初速单次制动工况下轻度制动和中度制动的能量回收率分别为19.05%和15.69%,CCBC工况下制动能量回收率达到了16.65%;提出的复合制动控制策略能够满足实车制动需求,在30km·h~(-1)初速单次制动工况下轻度制动和中度制动时,蓄电池SOC分别上升了0.019%和0.011%。因此,基于制动意图识别的复合制动控制策略能够显著提高电动汽车的能量利用效率,是一种提升电动汽车经济性的有效方法。

英文摘要:

In order to improve the braking energy recovery efficiency and braking performance of range-extended heavy commercial vehicle, the fuzzy inference rules of braking intention were designed based on the braking pedal displacement and the rate of brake pedal displacement, which were obtained from a large number of braking data after analysis. A model of braking intention recognition was established by LQV neuro fuzzy system. In consideration of the constraints such as braking force distribution, the motor regenerative braking and the battery, an electromechanical composite braking control strategy was established based on braking intention recognition. And the performance of composite braking control strategy was verified by the simulation of single braking operating condition with 60 km · h-1 initial velocity, simulation of typical Chinese city bus operating cycle (CCBC), and vehicle tests. The simulation results show that the proposed strategy in this paper can improve braking energy recovery rate as braking force distribution is optimized after driver's braking intention being accurately identified, and braking energy recovery rates of light braking and moderate braking are respectively 19.05% and 15.69%in single braking operating condition with 60 km · h-1 initial velocity. In CCBC simulation, the energy recovery rate reaches 16.65%. The proposed strategy can meet the needs of real vehicle, and the battery SOC increases by 0. 019% and 0. 011% respectively in light braking and moderate braking with 30 km · h- 1 initial velocity. Therefore, in terms of braking intention recognition, the electric vehicle's energy utilization efficiency can be remarkably improved by the composite braking control strategy, an effective method to promote the economy performance of electric vehicle.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国公路学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国公路学会
  • 主编:马建
  • 地址:西安市南二环路中段长安大学内
  • 邮编:710064
  • 邮箱:zgglxb@qq.com
  • 电话:029-82334387
  • 国际标准刊号:ISSN:1001-7372
  • 国内统一刊号:ISSN:61-1313/U
  • 邮发代号:52-194
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25267