Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.
Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.