位置:成果数据库 > 期刊 > 期刊详情页
分布式环境中基于核函数的极限学习机
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110819
  • 相关基金:国家自然科学基金资助项目(61272181,61202087); 武汉大学开放基金资助项目(SKLSE2012-09-40)
中文摘要:

针对海量数据规模下的集中式核函数极限学习机的性能问题,将基于核函数的极限学习机扩展到云计算技术框架下,提出了基于MapReduce的分布式核函数极限学习机MR-KELM.该算法将分布式径向基核函数计算出的核函数矩阵进行分布式矩阵分解,并通过分布式矩阵向量乘法得到分类器输出权重,减小了网络通讯和数据交换代价.实验结果表明,MR-KELM算法能够在不影响基于核函数的极限学习机的计算理论的前提下,具有较好的可扩展性和分类训练性能.

英文摘要:

With the exponentially increasing volume of training data, the performance of centralized ELM with kernels suffers due to large matrix operations. A distributed algorithm named MapReduce based kernelized ELM (MR-KELM) was proposed, which realized an implementation of ELM with kernels on MapReduce in the cloud. The kernel matrix generated by distributed radial basis function was decomposed and then the output weights by distributed multiplication of matrix and vector were calculated by the proposed algorithm. Communications and data exchanges in distributed matrix operations were reduced and good scalability was achieved by MR-KELM. Extensive experiments on synthetic datasets were conducted to verify the training performance and scalability of MR-KELM. Experimental results showed that MR-KELM was effective and efficient for massive learning applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296