RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS
- ISSN号:0254-9409
- 期刊名称:《计算数学:英文版》
- 时间:0
- 分类:O232[理学—运筹学与控制论;理学—数学] S965.325[农业科学—水产养殖;农业科学—水产科学]
- 作者机构:[1]Research Center for Mathematics and Economics Tianjin University of Finance and Economics, Tianjin 300222, China, [2]Institute of System Sciences, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
- 相关基金:Acknowledgments. The authors wish to thank the anonymous referees for their careful reading of the manuscript and for their suggestions. The first and the third authors were supported in part by the National Basic Research Program (2007CB814906), the National Natural Science Foundation of China (10471103 and 10771158), Social Science Foundation of the Ministry of Education of China (06JA630047), Tianjin Natural Science Foundation (07JCYBJC14300), and Tianjin University of Finance and Economics. The second author was supported by the National Basic Research Program under the Grant 2005CB321701 and the National Natural Science Foundation of China under the Grant 10771211.
关键词:
最优控制问题, RICHARDSON, 外推法, 有限元方法, 校正, 有限元逼近, 缺陷, 后验误差估计, Optimal control problem, Finite element methods, Asymptotic error expansions, Defect correction, A posteriori error estimates.
中文摘要:
在为到最佳的控制问题的一个班的双线性的有限元素近似的 H1 标准的 Asymptotic 错误扩大为矩形的网孔被导出。与矩形的网孔,二个不同计划和插值缺点修正的理查森推测能被使用。数字近似被用来产生的更高的顺序一以后|为有限元素近似的错误评估者。[从作者抽象]
英文摘要:
Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied. The higher order numerical approximations are used to generate a posteriori error estimators for the finite element approximation.