位置:成果数据库 > 期刊 > 期刊详情页
微纳通道中牛顿流体毛细流动的研究进展
  • ISSN号:0023-074X
  • 期刊名称:《科学通报》
  • 时间:0
  • 分类:O373[理学—流体力学;理学—力学]
  • 作者机构:清华大学工程力学系,热科学与动力工程教育部重点实验室,北京100084
  • 相关基金:国家自然科学基金(51322603,51136001,51356001,51321002); 教育部新世纪优秀人才支持计划资助
作者: 杨敏, 曹炳阳
中文摘要:

毛细流动广泛存在于自然科学与工程技术等诸多领域,微纳通道中毛细流动近年来在微纳机电系统、生物医学、环境监测、石油开采、多孔介质渗流等领域获得了广泛应用.描述宏观牛顿流体毛细流动过程的是Lucas-Washburn(LW)模型,该模型在微纳通道中的适用性还没有定论,因而受到国际学术界关注.本文从理论模型、数值模拟和实验研究3个方面综述了微纳通道中牛顿流体毛细流动的研究进展,已有的研究表明需要对毛细流动进行分区讨论:(1)惯性力作用区,流动距离与时间t成正比;(2)黏性力-惯性力作用区,惯性力、毛细力、黏性力均对流动有影响;(3)黏性力作用区,黏性力与毛细力平衡,流动距离与t^(1/2)成正比;(4)竖直管道中还需要考虑重力的影响,存在黏性力-重力作用区.在黏性力作用区,LW模型仍然可以定性描述微纳通道中毛细流动过程,但需要引入动态接触角、气泡、电黏性等影响因素的修正.最后针对目前实验研究中存在的一些问题,总结有待深入研究的方向.另外,本文也对非牛顿流体毛细流动的研究做了简单介绍和展望.

英文摘要:

Capillary filling is extensively involved in natural science and engineering technology, such as oil recovery, building conservation, ink printing, etc. Due to large surface to volume ratio, capillary action is very prominent at micro- and nonoscale regime, and recent years it has triggered a tremendous acceleration of research related to the capillary filling process in micro- and nanochannels. For instance, the capillary action is used to eliminate some additional accessories such as electric drive devices or syringe pumps, which can greatly simplify the design of microfluidic and nanofluidic devices. All these facts show that a thorough understanding of the kinetics of capillary-driven filling in micro- and nanochannels is of great significance. Almost a century ago, Lucas and Washburn reported an analytical solution for capillary filling of Newtonian fluids in a small cylindrical capillary tube: the filling distance is proportional to the square root of time, which is also known as the classical LW equation. Although the LW equation can well describe macroscopic capillary filling process, it's availability at micro- and nanoscale regime is still an open question, which has attracted a lot of attention. This paper summarizes the progress of capillary filling kinetics in micro- and nanochannels in views of theoretical models, numerical simulations and experimental studies. All the three perspectives indicate that the capillary filling process should be discussed by dividing into four stages as follows:(1) purely inertial time stage, where the filling distance is proportional to the time t;(2) visco-inertial time stage, where the inertia force, capillary force and viscous force have comparable effect on the filling kinetics;(3) purely viscous time stage, where the capillary force is balanced by viscous force and the filling distance is linearly related to the t^1/2;(4) the gravity should be considered when the pipe is vertical and there is a viscous and gravitational time stage. In purely v

同期刊论文项目
期刊论文 73
同项目期刊论文
期刊信息
  • 《科学通报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院
  • 主编:周光召
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:csb@scichina.org
  • 电话:010-64036120 64012686
  • 国际标准刊号:ISSN:0023-074X
  • 国内统一刊号:ISSN:11-1784/N
  • 邮发代号:80-213
  • 获奖情况:
  • 首届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:81792