位置:成果数据库 > 期刊 > 期刊详情页
基于最近邻的随机非线性降维
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:兰州大学信息科学与工程学院,兰州730000
  • 相关基金:国家自然科学基金资助项目(61272213)
中文摘要:

针对线性降维技术应用于具有非线性结构的数据时无法得到令人满意的结果的问题,提出一种新的着重于保持高维空间局部最近邻信息的非线性随机降维算法(NNSE)。该算法首先在高维空间中通过计算样本点之间的欧氏距离找出每个样本点的最近邻点,接着在低维空间中产生一个随机的初始分布;然后通过将低维空间中的样本点不断向其最近邻点的平均位置移动,直到产生稳定的低维嵌入结果。与一种先进的非线性随机降维算法——t分布随机邻域嵌入(t-SNE)相比,NNSE算法得到的低维结果在可视化方面与t-SNE算法相差不大,但通过比较两者的量化指标可以发现,NNSE算法在保持最近邻信息方面上明显优于t-SNE算法。

英文摘要:

As linear dimensionality reduction methods usually cannot produce satisfactory low-dimensional embedding when applied to data with nonlinear structure, a new nonlinear dimensionality reduction method named NNSE was proposed to keep the local nearest neighbor information in the high-dimensional space. Firstly, the nearest neighbor points were found by calculating the Euclidean distance between the sample points in the high-dimensional space, then a random initial distribution of the data points was generated in the low-dimensional space. Secondly, by moving the data points towards the mean position of their nearest neighbors found in the high-dimensional space, the data point positions were iteratively optimized until the embedding becomes stable. In the comparison with a state-of-the-art nonlinear stochastic dimensionality reduction method named t-SNE( t-distributed Stochastic Neighbor Embedding), the low-dimensional embedding produced by NNSE method is similar to the visualization produced by the t-SNE method. However, it is shown that the NNSE method is superior to t-SNE in preserving the local nearest neighbor information in the low-dimensional embedding by using a quantitative indicator.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679