位置:成果数据库 > 期刊 > 期刊详情页
一种基于信息熵的关键流量矩阵发现算法
  • 期刊名称:软件学报核心期刊
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,湖南长沙410073
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No.60803153(国家自然科学基金);the National High-Tech Research and Development Plan of China under Grant No.2008AA01A325(国家高技术研究发展计划(863))
  • 相关项目:BGP协议的并行处理技术与关键算法研究
中文摘要:

研究关键流量矩阵发现问题,提出了近似算法MinMat引入息熵和耗费函数等概念,计算流量矩阵的信息熵,选取信息熵较大的若干个矩阵作为候选关键矩阵,然后对最小耗费的簇进行合并,直到最后获得需要的流量矩阵.使用Abilene提供的网络流量矩阵进行实验,使用Totem模拟验证了MinMat算法选择结果的有效性.理论分析与实验结果表明,MinMat比K-means层次凝聚CritAC效率更高,选择结果具有更好的代表性.

英文摘要:

This paper studies the critical traffic matrices selection problem and develops an algorithm called MinMat which uses information entropy to select the first critical matrices at first, then takes merging cost into consideration when agglomerating a pair of clusters. The algorithm is evaluated by using a large collection of real traffic matrices collected in Abilene network. Theoretical analysis and experimental results demonstrate that MinMat algorithm is more effective than K-means, Hierarchical Agglomeration, CritAC, and by simulating on Totem, it is concluded that a small number of critical traffic matrices suffice to yield satisfactory performance.

同期刊论文项目
同项目期刊论文