We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge2Sb2Te5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×108W∕m2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge2Sb2Te5 (GST). The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer (silica) and a high-index GST planar cavity. Three absorption peaks with the maximal absorbance up to 99.94% are achieved, owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity. The intensities and positions of the absorption peaks show strong dependence on structural parameters. A heat transfer model is used to investigate the temporal variation of temperature within the GST region. The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11 x 10(8) W/m(2), due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber. The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers. (C) 2016 Chinese Laser Press