位置:成果数据库 > 期刊 > 期刊详情页
基于扩散距离的SURF特征图像匹配算法
  • ISSN号:1003-5060
  • 期刊名称:《合肥工业大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学计算机与信息学院,安徽合肥230009
  • 相关基金:国家自然科学基金资助项目(61174170;61371155); 安徽省科技攻关计划资助项目(1301b042023)
中文摘要:

针对高维特征向量存在的使用传统欧氏距离计算最近邻匹配正确率低的问题,文章提出了一种基于SURF和扩散距离的图像匹配算法。首先用Fast Hessian检测子进行特征点检测,生成SURF特征描述向量,然后利用扩散距离代替欧氏距离进行匹配,使用随机抽样一致从候选匹配中排除错误的匹配。实验证明该算法提高了SURF算法匹配的正确率,并在图像形变、光照变化方面具有较高的鲁棒性。

英文摘要:

In this paper,an image matching algorithm based on speeded-up robust features(SURF)and diffusion distance is proposed in view of the low calculation accuracy of nearest neighbor matching of high-dimensional feature vector using the Euclidean distance.In this algorithm,Fast Hessian detection is used to find features,and the feature vector of SURF descriptors is generated.Then a SURF matching algorithm based on diffusion distance is proposed which replaces the Eculidean distance with the diffusion one.And the random sample consensus(RANSAC)is presented to exclude the mismatching points.The experimental results show that the algorithm can improve the matching accuracy of SURF algorithm,and has higher robustness in image deformation and illumination change than the traditional one.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《合肥工业大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:合肥工业大学
  • 主编:何晓雄
  • 地址:合肥市屯溪路193号
  • 邮编:230009
  • 邮箱:XBZK@hfut.edu.cn
  • 电话:0551-2905639
  • 国际标准刊号:ISSN:1003-5060
  • 国内统一刊号:ISSN:34-1083/N
  • 邮发代号:26-61
  • 获奖情况:
  • 1999中国优秀高校自然科学学报,1997华东地区优秀期刊,1998安徽省优秀科技期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19655