Keccak 是 SHA-3 比赛周围为决赛选择的五个哈希函数之一,并且它的内部原语是称为 Keccak-f 的排列。在这份报纸,我们在 Keccak-f 为唯一的非线性的转变的逆观察那,任何产量坐标的代数学的度并且任何二个产量坐标的一个产品两个都是 3,它是 2 不到它 5 的尺寸。在重申的排列的度的上面的界限上把这观察与一项提议相结合,我们为 Keccak-f 排列改进零和的 distinguisher 与完整由从 21590 ~ 21575 降低零和的分区的尺寸的 24 个回合。
Keccak is one of the five hash functions selected for the final round of the SHA-3 competition, and its inner primitive is a permu- tation called Keccak-f. In this paper, we observe that for the inverse of the only nonlinear transformation in Keccak-f, the algebraic degree of any output coordinate and the one of the product of any two output coordinates are both 3, which is 2 less than its size of 5. Combining this observation with a proposition on the upper bound of the degree of iterated permutations, we improve the zero-sum distinguisher for the Keccak-fpermutation with full 24 rounds by lowering the size of the zero-sum partition from 2^1590 to 2^1575.