使用系统调用序列的异常检测系统对于模拟正常用户的攻击行为有较好的检测效果.传统的算法主要关注切分的长度,却忽略了各个系统调用序列的发生频率对整个检测结果的重要性.在对样本进行切分的情况下,构建了一个对系统调用序列发生频率敏感的基于支持向量描述异常检测模型,利用发生频率定义样本的"重要性",使分类器更加倾向于这些重要的样本.采用国际标准数据集进行测试.实验表明,与传统的检测模型相比,基于序列发生频率的检测模型具有较低的误报警率.