位置:成果数据库 > 期刊 > 期刊详情页
恶意代码分类的一种高维特征融合分析方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP309.2[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]烽火通信科技股份有限公司,武汉430074, [2]国防科学技术大学计算机学院,长沙410073
  • 相关基金:国家自然科学基金资助项目(61379148,61472437)
中文摘要:

恶意代码的多维度特征融合与深度处理,是恶意代码分类研究的一种发展趋势,也是恶意代码分类研究的一个难点问题。提出了一种适用于恶意代码分类的高维特征融合方法,对恶意代码的静态二进制文件和反汇编特征等进行提取,借鉴SimHash的局部敏感性思想,对多维特征进行融合分析和处理,最后基于典型的机器学习方法对融合后的特征向量进行学习训练。实验结果和分析表明,该方法能够适应于样本特征维度高而样本数量较少的恶意代码分类场景,而且能够提升分类学习的时间性能。

英文摘要:

High-dimensional feature fusion and deep feature synthesis of malware features is new tendency and difficult problem of malware classification research. This paper presented a high-dimensional feature fusion method for malware classification. Firstly, it extracted features from both binary files and disassembly files using static analysis. Secondly, it analyzed and processed the high-dimensional feature vectors based on the SimHash method with the idea of locality-sensitive features. Final- ly, it trained and learned the fused feature vectors based on the classical machine learning method. Experimental results and analysis show that the proposed method is suitable for malware classification with high-dimensional features while only a small number of samples are available, and it can also improve the time performance of sample classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049