位置:成果数据库 > 期刊 > 期刊详情页
A Method of Soil Salinization Information Extraction with SVM Classification Based on ICA and Texture Features
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] S156.4[农业科学—土壤学;农业科学—农业基础科学]
  • 作者机构:[1]College of Resources and Environment Science,Xinjiang University,Urumqi 830046, [2]Key Laboratory of Oasis Ecology,Xinjiang University,Urumqi 830046, [3]Department of Earth Sciences,the University of Memphis,Memphis,TN 38152,USA, [4]Graduate School of Xinjiang University,Urumqi 830046, [5]Department of Physical and Environmental Sciences Mesa State College in Grand Junction,CO 81501,USA, [6]Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011, [7]Cele National Station of Observation & Research for Desert-Grassland Ecosystem in Xinjiang,Cele 848300
  • 相关基金:Supported by the National Key Basic Research Development Pro-gram (2009CB421302 ); National Natural Science Foundation ofChina (40861020 40961025 40901163); Natural Science Foun-dation of Xinjiang (200821128 ); Open Foundation of State KeyLaboratory of Resources and Environment Information ystems(2010KF0003SA)
中文摘要:

用遥远地察觉到的图象的影响盐的土壤分类是在遥感的最普通的应用之一,,并且这个目的在 literature.This 学习作为一个学习区域拿 Weigan 和 Kuqa 河的三角洲绿洲并且从 ETM Landsat data.It 讨论土壤 salinization 的预言基于独立部件 AnalysisICA 和质地 features.Meanwhile 报导支持向量 MachineSVM 分类方法,字母 introduc

英文摘要:

Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM+ Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by 10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642