随机性检测在密码学中发挥着关键的作用。二元推导是一种重要的随机性检测算法。根据二元推导原始定义实现的算法所耗时间随参数的增大线性增长。当参数逐渐增大时,算法的实用性降低。该文从二元推导的原理出发,分析二元推导的检测过程,得出由参数确定的推导流比特与原始流相关比特的关系。利用这种关系优化了算法的实现,改进后的算法所耗时间与具体的参数有关,速度上有很大的提高。
Randomness test plays an important role in applied cryptography. Binary derivation is one of the randomness test algorithms. The time consuming of algorithm implementing according to the original definition increases linearly with the parameter of binary derivation test. This paper analyses the test procedure based on its theory and educes the relation between the derivation bit and the original bits. It modifies the implementation of the algorithm utilizing the relation and acquires good effect.