应用求积分方法,证明了:若存在α≤P使得lims→+∞ sup f(s)/s^p-1(lns)^α=L∈[0,∞),则问题(|u′(x)|^p-2u′(x))′=λf(u(x)),u≥0,x∈(0,1),u(O)=u(1)=∞,不存在古典解;若存在α〉p使得lims→+∞ sup f(s)/s^p-1(lns)^α=L∈[0,∞),则该问题存在古典解,这里p〉1.
By the quadrature method, it is showed that if there exists α≤P such that lims→+∞ sup f(s)/s^p-1(lns)^α=L∈[0,∞),then the problem (|u′(x)|^p-2u′(x))′=λf(u(x)),u≥0,x∈(0,1),u(0)=u(1)=∞, has no classical solution in for any λ 〉0; and if there exists α 〉p such .that lims→+∞ sup f(s)/s^p-1(lns)^α=L∈[0,∞), then the problem has at least one classical solution for some λ〉 0, where p 〉 1.f∈ C^1 (R), or f∈C[α, ∞ ) for some α∈R.