该文所考虑的具有内部奇异点的J-对称微分算子,内部有奇异点,并且奇异点左右可以有不相同的亏指数。该文构造了相应的直和空间,并应用直和空间的相关理论及Knowles的最大算子域分解定理,在正则型域非空的情形下,利用微分方程的解给出了此类J-对称算子的J-自共轭延拓的完全解析描述,并且确定其边界条件的矩阵仅由微分方程的解在正则点的初始值决定。
The J-symmetric differential operators which have finite interior singular points with different deficiency indices are investigated. A direct sum space is constructed. By the theory of direct sum space and the Knowles' decomposition of the maximal domain, this paper gives the complete and analytic characterization for J-self-adjoint domains of J-symmetric expressions. The matrix defining the boundary conditions is only determined by the initial values of the regular points of the solutions.