位置:成果数据库 > 期刊 > 期刊详情页
基于小波域对数正态模型的滚动轴承故障诊断
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:TP206.3[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]湖南铁道职业技术学院,株洲412001, [2]中南大学,长沙410083
  • 相关基金:国家自然科学基金资助项目(60774069); 中国博士后科学基金资助项目(20070410462)
中文摘要:

针对小波分析无法全面准确描述滚动轴承振动信号的非高斯问题,提出一种结合小波变换与对数正态分布模型的故障特征提取方法,以提取能准确反映滚动轴承运行状态的特征信息。首先,通过小波变换对滚动轴承运行时产生的非平稳、非高斯振动信号进行分解重构,得到不同尺度下的重构信号;然后对重构信号建立对数正态分布模型,提取模型的对数均值和对数标准差作为表征滚动轴承运行状态的统计特征;最后采用支持向量机分类器对提取的特征进行故障分类与识别。实验结果表明,该方法可以有效、准确地识别滚动轴承的运行状态。

英文摘要:

Since the non-Gaussian of rolling bearing vibration signals can not be fully described by the wavelet analysis,a feature extraction approach based on wavelet transformation and lognormal model was proposed,so as to that the feature vectors were extracted to reflect accurately the running state of rolling bearings.First of all,the non-stationary and non-Gaussion signals generated by rolling bearing vibrations were decomposed into some coefficients by wavelet transformation.Then the signals of single reconstruction were modeled as lognormal models and its log mean and log variance were extracted.Finally,fault patterns were recognized by the feature vectors using support vector machine(SVM) classifier.The experimental results show the effectiveness and accuracy of the proposed approach for recognizing the states of rolling bearings.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788