位置:成果数据库 > 期刊 > 期刊详情页
基于快速傅里叶变换的局部分块视觉跟踪算法
  • ISSN号:1009-5896
  • 期刊名称:电子与信息学报
  • 时间:2015.10.15
  • 页码:2397-2404
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学信息与导航学院,西安710077
  • 相关基金:国家自然科学基金(61175029,61473309); 陕西省自然科学基金(2011JM8015)
  • 相关项目:基于多特征融合穷搜索的快速鲁棒视觉跟踪技术研究
中文摘要:

针对视觉跟踪中目标表观变化、局部遮挡、背景干扰等问题,该文提出一种基于快速傅里叶变换的局部分块视觉跟踪算法。通过建立目标分块核岭回归模型并构建循环结构矩阵进行分块穷搜索来提高跟踪精度,利用快速傅里叶变换将时域运算变换到频域运算提高跟踪效率。首先,在包含目标的初始跟踪区域建立目标分块核岭回归模型;然后,提出通过构造循环结构矩阵进行分块穷搜索,并构建目标分块在相邻帧位置关系模型;最后,利用位置关系模型精确估计目标位置并进行分块模型更新。实验结果表明,该文算法不仅对目标表观变化、局部遮挡以及背景干扰等问题的适应能力有所增强,而且跟踪实时性较好。

英文摘要:

In order to solve the problems of appearance change, local occlusion and background distraction in the visual tracking, a local patch tracking algorithm based on Fast Fourier Transform(FFT)is proposed. The tracking precision can be improved by establishing object's patch kernel ridge regression model and using patch exhaustive search based on circular structure matrix, and the efficiency can be improved by transforming time domains operation into frequency domains based on FFT. Firstly, patch kernel ridge regression model is constructed according to the initialized tracking area. Secondly, a patch exhaustive search method based on circular structure matrix is proposed, then the position model is constructed in adjoining frame. Finally, the position of the object is estimated accurately using the position model and the local patch model is updated. Experimental results indicate that the proposed algorithm not only can obtain a distinct improvement in coping with appearance change, local occlusion and background distraction, but also have high tracking efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739