位置:成果数据库 > 期刊 > 期刊详情页
多分类器选择集成方法
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:186-188
  • 语言:中文
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60702056).
  • 相关项目:基于粒子群优化和先验信息的约束学习算法研究
中文摘要:

针对目前人们对分类性能的高要求和多分类器集成实现的复杂性,从基分类器准确率和基分类器间差异性两方面出发,提出了一种新的多分类器选择集成算法。该算法首先从生成的基分类器中选择出分类准确率较高的,然后利用分类器差异性度量来选择差异性大的高性能基分类器,在分类器集成之前先对分类器集进行选择获得新的分类器集。在UCI数据库上的实验结果证明,该方法优于bagging方法,取得了很好的分类识别效果。

英文摘要:

Because of the high request to classifies performance of people and the implementation complexity of multiple classifiers ensemble approach,this paper proposes an new method of selective multiple classifiers ensemble which considers of the accuracy of individual classifier and diversity among individual classifiers.This algorithm first chooses the more accuracy classifies from the production base,then chooses more different ones using diversity measure before integration.The resuh of the UCI database experiment demonstrate that the method is better than the Bagging method,and it is very good and useful for classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887