位置:成果数据库 > 期刊 > 期刊详情页
TrSVM:一种基于领域相似性的迁移学习算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中山大学信息科学与技术学院,广州510006
  • 相关基金:国家自然科学基金项目(61033010,61070005);国家科技计划基金项目(2008ZXL005013);广东科技计划基金项目(2009A080207005,20098090300450,2010A040303004)
中文摘要:

迁移学习是对传统监督学习的扩展,试图利用其他相关领域中的现存数据来帮助完成当前领域的学习任务.对于归纳式迁移学习算法,当目标领域只有少量数据时,已有的算法容易受到选择性偏差的影响,不能充分发挥相关领域数据的作用.为解决该问题,提出一种利用领域相似性的新途径:通过定义领域弱相似性的概念,将相似性的约束与目标分类器联系起来,能在训练过程中有效利用相关领域的大量数据,设计出一种基于支持向量机的迁移学习算法TrSVM,并给出求解过程.在大量数据集上的实验结果表明了新算法的有效性.

英文摘要:

Transfer learning algorithms focus on reusing related domain data to help solving learning tasks in the target domain. In this paper, we study the problem of inductive transfer learning. Most of the existing algorithms in inductive transfer learning might suffer from the problem of sample selection bias when the number of target domain data is too small. To address this problem, we propose to utilize domain similarity in a new approach. Through detailed discussion about the similarity of related domains, we define the concept of weak domain similarity. Using this concept to give additional constraints on the target classifiers, we develop a simple but effective approach to leverage the useful knowledge from the related domain, so that related domain data can be directly used in the training process. In this way, we are able to make the target classifier less sensitive to the small amount of target training data. Furthermore, we show that a modified SMO method can be applied to optimize the objective function in the algorithm effectively. The new algorithm is referred to as TrSVM, and can be seen as extension of support vector machines for transfer learning. Experiment results on extensive datasets show that TrSVM outperforms support vector machines and the state-of- the-art TrAdaBoost algorithm, and demonstrate the effectiveness of our algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349