针对在三维重构过程中用L—M(Levenberg—Marquardt)方法求解超二次曲面参数拟合问题的不足,提出了用粒子群优化算法来进行超二次曲面参数拟合的新方法.本文详细阐述了超二次曲面的三维表示特性,L—M算法拟合超二次曲面参数模型的分析,以及用粒子群优化算法拟合超二次曲面参数模型的原理、实现方法和实验结果.用粒子群优化算法对超二次曲面进行参数拟合,克服了L—M方法的缺陷,取了满意的效果.
In this paper, a new method of superquadric parametric fitting by particle swarm optimization algorithm was proposed. It aimed at remedying the defect of superquadric parametric fitting problem which is solved with L-M (Levenberg-Marquardt) method in 3D reconstruction. This paper investigated 3D representation characteristic of superquadrics and the analysis of fitting superquadric parametric model using L-M algorithm. It presented the principle, implementing method and experimental results of fitting superquadric parametric using particle swarm optimization. The results showed the effectiveness of the proposed approach.