联合星载GPS双频观测值与简化的动力学模型,在卫星运动方程中引入适当的伪随机脉冲参数,对SWARM卫星进行精密定轨。采用星载GPS相位观测值残差、重叠轨道以及与外部轨道对比等3种方法对SWARM卫星简化动力学定轨结果进行检核。结果表明:SWARM星载GPS相位观测值残差RMS为7~10mm;径向、切向以及法向6h重叠轨道差值RMS均在1cm左右,3个方向均无明显的系统误差。通过与欧空局(ESA)发布的精密轨道进行对比分析,径向轨道差值RMS为2~5cm,切向轨道差值RMS为2~5cm,法向轨道差值RMS为2~4cm,3D轨道差值RMS为4~7cm;SWARM-B定轨精度优于SWARM-A与SWARM-C。因此,采用简化动力学法与本文提供的定轨策略进行SWARM卫星精密定轨是切实可行的,定轨结果良好且稳定,定轨精度达到厘米级。
Combining dual-frequency satellite-borne GPS observations with reduced dynamic models, and introducing proper pseudo-stochastic pulse parameters into the satellite's motion equation, SWARM satellite precise orbit determination is implemented. The orbit accuracy is assessed using three methods, which include analysis satellite-borne GPS phase observation residuals, orbit overlaps and external orbit comparisons. The results indicate that the SWARM satellite-borne GPS phase observation residual RMS is in the range of 7 to 10 mm, radial, along-track and cross-track orbit overlap difference RMS of 6 hours are about 1 cm, three directions have no significant systematic errors, comparisons with orbits computed by European Space Agency (ESA), Radial orbit difference RMS is in the range of 2 to 5 cm, along-track orbit difference RMS is in the range of 2 to 5 cm, cross-track orbit difference RMS is in the range of 2 to 4 cm, 3D orbit difference RMS is in the range of 4 to 7 cm, SWARM-B orbit accuracy is better than SWARM-A and SWARM-C. This evaluations indicate that SWARM satellite precise orbit determination is practicable by using reduced-dynamic method and orbit determining strategy in the article, the orbit solution is wel and stable, the orbit accuracy reaches centimeter level.