本文主要研究海杂波频谱的扩展自相似特性及多尺度Hurst指数在海杂波目标检测中的应用.作为分数布朗运动的一种推广,扩展自相似过程采用多尺度Hurst指数来描述分形信号.多尺度Hurst指数可以描述分形信号在各尺度下的细节信息,弥补了单一Hurst指数只能从整体上描述分形信号粗糙度的不足.首先,本文在实测雷达数据基础上研究了海杂波频谱的扩展自相似性以及影响参数;然后,利用在最优频域尺度下海杂波频谱的多尺度Hurst指数对目标相对较敏感的特点设计恒虚警检测方法,实现海杂波中的目标检测.实测数据分析表明,海杂波频谱的多尺度Hurst指数比时域单一Hurst指数、时域多尺度Hurst指数具有更好的海杂波与目标区分能力,且由于Fourier变换可以有效提升信杂比,该检测方法具有检测海杂波中微弱运动目标的潜力.
This paper mainly studies the extended self-similarity of sea clutter frequency spectrum and the application of multi-scale Hurst exponent to target detection within sea clutter.As a generalization of the fractional Brownian motion,the extended self-similar process uses the multi-scale Hurst exponent to describe fractal signals.The multi-scale Hurst exponent can characterize the details of fractal signals in different scales,which makes up for the deficiency of the mono-Hurst exponent that can only describe the whole roughness of fractal signals.Based on real radar data,this paper first studies the extended self-similarity of real sea clutter frequency spectrum and the influencing parameters.Then,the characteristic that the multi-scale Hurst exponent in the optimal frequency scale is relatively sensitive to the target is utilized for designing CFAR detection algorithm for target detection within sea clutter.The analytic results of real data show that the multi-scale Hurst exponent of sea clutter frequency spectrum performs better in separating target from sea clutter than the mono-Hurst exponent and the multi-scale Hurst exponent in time domain.Additionally,because Fourier transform can promote the signal-to-clutter ratio effectively,the proposed detection method has the potential for detecting weak moving targets within sea clutter.