藏文词性标注是藏文信息处理的基础,在藏文文本分类、自动检索、机器翻译等领域有广泛的应用。该文针对藏文语料匮乏,人工标注费时费力等问题,提出一种基于词向量模型的词性标注方法和相应算法,该方法首先利用词向量的语义近似计算功能,扩展标注词典;其次结合语义近似计算和标注词典,完成词性标注。实验结果表明,该方法能够快速有效地扩大了标注词典规模,并能取得较好的标注结果。
Part of Speech (POS) tagging is fundamental to Tibetan processing, with a wide applications in Tibetan text classification, information retrieval, machine translation and other fields. This paper proposes a method of Ti betan POS tagging based on distributed representation. First, this method extends the dictionary by semantic approximation according to the distributed representation. Then the POS tagging is completed according to the dictionary and the semantic similarity. Experimental results show that this method can expand the dictionary with a better result.