以最小化移动银行营销费用、最大化用户使用行为为优化目标,建立可描述一般性受当前影响因素状态约束的移动银行用户使用行为决策问题的优化模型,并提出实证关系驱动的定性模拟方法对模型进行求解.以移动银行使用意愿影响因素为研究对象,设计了问卷,使用SPSS的统计分析以及结构方程模型得到影响因素之间的关系.通过QSIM算法驱动因素间交互关系的动态演化,结合BP神经网络训练目标函数,从而寻找用户行为趋于稳定时的最佳决策变量组合,并利用波动一均衡现象,验证了模型的合理性.算例分析表明了该模型和算法的有效性,能为移动银行推广的实时优化决策提供支持,结果表明:商家声誉和感知风险对用户使用意愿影响显著,但感知风险影响程度已经降低.
To minimize the marketing cost and maximize user adoption behavior, the optimization model describing mobile bank user adoption behavior decision problem, with constraint of current state of influencing factors is developed. We use adoption drivers as an example with questionnaire designed to obtain data from customers, which is then statistically analyzed using SPSS. Based on the objective function obtained by using BP neural network, and dynamic evolution of the linkages among adoption drivers driven by QSIM algorithm, qualitative modeling and simulation is created to study the optimal drivers combination. The model is validated by oscillation-equilibrium phenomenon, which contributes some supports to real-time optimization decision of mobile bank business promotion. The results also show that except standard habit, corporate reputation and perceived risk have significant effect on user acceptance, though the impact of perceived risk has decreased.