位置:成果数据库 > 期刊 > 期刊详情页
QPSO算法在非线性观测器设计中的应用
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP273.5[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60474030)
中文摘要:

具有量子行为的粒子群优化(Quantum-behaved Particle Swarm Optimization,QPSO)算法是继粒子群优化算法(Partiele Swarm Optimization,PSO)后,最新提出的一种新型、高效的进化算法。提出了运用QPSO算法设计的非线性观测器方法。该方法属于滚动时域估计方法,利用具有量子行为的粒子群算法优化获得系统状态的最优估计。仿真结果显示该方法对初始条件不敏感,具有很强的跟踪能力。

英文摘要:

Quantum-behaved Particle Swarm Optimization( QPSO), is a new type, efficient swarm intelligence algorithm that proposed lately succeed to Particle Swarm Optimization (PSO). A QPSO-based nonlinear observer design method was proposed. It belonged to moving horizon estimation method. Quantum-behaved particle swarm optimization algorithm was employed to find optimal estimation of the system states in this method. Simulation result showed that the proposed observer is not sensitive to the initial conditions and has a good tracking ability to the variations of the states.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049