隐式篇章关系分类主要任务是在显式关联线索缺失的情况下,自动检测特定论元之间的语义关系类别。前人研究显示,语言学特征能够有效辅助隐式篇章关系的分类。目前,主流检测方法由于缺少足够的已标注隐式训练样本,导致分类器无法准确学习各种分类特征,分类精确率仅约为40%。针对这一问题,该文提出一种基于训练样本集扩展的隐式篇章关系分类方法。该方法首先借助论元向量,以原始训练样本集为种子实例,从外部数据资源中挖掘与其在语义以及关系上一致的"平行训练样本集";然后将"平行训练样本集"加入原始训练样本集中,形成扩展的训练样本集;最后基于扩展的训练样本集,实现隐式篇章关系的分类。该文在宾州篇章树库(Penn Discourse Treebank,PDTB)上对扩展的训练样本集进行评测,结果显示,相较于原始训练样本集,使用扩展的训练样本集的实验系统整体性能提升8.41%,在四种篇章关系类别上的平均性能提升5.42%。与现有主流分类方法性能对比,识别精确率提升6.36%。
The implicit discourse relation recognition is to automatically detect the relationships between two arguments without explicit connectives. Previous studies show that linguistic features are effective for implicit discourse relation recognition. However, the state-of-the-art accuracy is merely 40% for the lack of enough training data. For the problem, this paper presents a novel implicit discourse relation recognition method based on the training data expansion. Firstly, we take some origin training data as seed samples, and then use them to mine semantically and relationally parallel data from the external data resources by using "arguments vectors". Secondly, we augment origin training data with the mined parallel training data. Finally, we experiment the implicit discourse relation classification using the expanded data. Experiment results on the Penn Discourse Treebank (PDTB) show that our method outperforms the baseline system with a gain of 8.41%on the whole, and 5.42 % on average in classification accuracy respectively. Compared with the state-of-the-art system, we further acquire 6.36% improvements.